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/ / there is little a priori knowledge of the plant parameters, the 
performance of certainty equivalence based adaptive control­
lers during the transient period, before the parameter estimates 
have converged, is usually less than adequate. This paper intro­
duces a new suboptimal loss function with an N-step-ahead 
prediction horizon, similar in principle to standard predictive 
control loss functions, for adaptive control applications. How­
ever, the new loss function is modified so that the resulting 
control law possesses caution in the sense that the uncertainty 
in the parameter estimates is taken into account automatically. 
As such, the cautious controller achieves more robust perfor­
mance than the corresponding certainty equivalence controller 
during the transient period when there is large uncertainty in 
the parameter estimates. The new cautious controller has a 
closed-form solution that involves only slightly more computa­
tional expense than the corresponding certainty equivalence 
predictive controller. 

1 Introduction 
Certainty equivalence (CE) is a widely used principle in 

the design of adaptive controllers and often results in a rea­
sonably effective and easily implemented control law. How­
ever, if there is little a priori knowledge of the plant parame­
ters, the performance of the CE-based adaptive controller 
during the transient period may be less than adequate. This 
results from the fact that under the CE principle the estimated 
parameters are treated as the true parameters, even though 
they may be far from their true values before they have had 
a chance to converge. A theoretically attractive alternative is 
to exactly minimize a stochastic quadratic loss function, 
which results in an optimal input that possess both caution 
and probing (Astrom and Wittenmark, 1995). An adaptive 
controller is probing if it attempts to excite the system to 
improve the parameter estimation, in addition to driving the 
system to a desired state. A controller is cautious if the con­
trol input is a function of the covariance of the parameter 
estimates and takes more cautious (i.e. less agressive) action 
if the parameter uncertainties are large. These properties are 
discussed in detail in Jacobs and Patchell (1972), Bar-Sha­
lom and Tse (1974), Sternby (1979), and Bar-Shalom 
(1981). 

The advantage of the cautious and probing optimal stochas­
tic adaptive controller is that uncertainties in the parameter 
estimates, which can be particularly large during the transient 
period, are dealt with in an "optimal" manner. Unfortu­
nately, for all but the simplest of situations the problem is 
far too complicated to solve exactly. Consequently, numerous 
researchers (Tse and Bar-Shalom, 1973; Ku and Athans, 
1973; Hughes and Jacobs, 1973; Wittenmark, 1975; Sternby, 
1976; Milito et al., 1980; Mookerjee and Bar Shalom, 1989) 
have attempted to modify the optimal control loss function 
and/or introduce simplifying assumptions so that the re-
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suiting control law is implementable, while retaining some 
elements of caution and probing. Many of these techniques 
have no closed-form solution and are too complicated to prac­
tically implement (Tse and Bar-Shalom, 1973; Ku and 
Athans, 1973; Mookerjee and Bar Shalom, 1989). Sternby 
(1976) develops a dual controller for the specific case that 
the plant is a one-dimensional four-state Markov chain. 
Hughes and Jacobs (1973), Wittenmark (1975), and Milito 
et al. (1980) restrict the loss function to a single-step predic­
tion horizon, and thus lose the flexibility of multi-step loss 
functions popular in predictive and LQ control strategies. 

The purpose of this paper is to introduce a new suboptimal 
N-step-ahead loss function for adaptive control applications. 
In addition to having a relatively simple closed-form control 
law and no restrictions on the length of the prediction hori­
zon, the resulting controller possesses caution in the sense 
that the control input is explicitly a function of the parameter 
estimation error covariance information. As such, the perfor­
mance during the transient period when the parameter esti­
mates are less accurate is improved over the corresponding 
CE controller. In Section 2 the new suboptimal N-step-ahead 
loss function is introduced and the cautious control law is 
derived. Monte Carlo simulation results comparing the cau­
tious controller with the corresponding CE controller are pre­
sented in Section 3. 

2 The Suboptimal N-Step-Aliead Cautious Control­
ler 

Consider the single-input single-output, time-varying, linear 
stochastic system 

z{k + 1) = A{k)z{k) + b{k)u(k) + w(k) 

y(k) = Cz(k) + v(k). (1) 

where zik) G T,y{k) £ f , w{k) G T , v{k) e R\ and uik) 
G ''R' are the state, output, system noise, observation noise, and 
input, respectively, kis a. time index. z(0) and w(k), v(k + 1) 
(fc = 0, 1, 2 . . . ) are assumed to be independent Guassian 
random vectors with zero mean and known covariance matrices. 
Let the system be represented in observable canonical form 
such that 

Aik) = { 

a,{k) 

a2(k) 

a„(k) 

0 0 
0 0 

b(k) = -

biik) 

b2(k) 

b„-^(k) 

b„ik) 

• , a n d C = [ l 0 . . . 0 ] . 

Define a(k) = [a^ik) azik) . . . a„(k)]^, and assume the un­
known parameters of the system are modeled by the Gauss-
Markov process 

a(k + 1) 

bik + 1) 

a(k) 

b{k) 
+ y(k), 

where y{k) is a zero-mean uncorrelated Gaussian process with 
known covariance matrix. 

By defining the augmented state vector .x(/c) = [z^ik) a^(k) 
b^(k)V, (1) can be written as the nonlinear stochastic system 
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xik+ 1) = f(x{k)) + g(x(k))u(k) + 
w(k) 

y(k) 
where 

(2) 

f(x(k)) ^ 

\A(k)z(k)] 

a{k) 

b(k) 

and 

The representation (2), including the Gauss-Markov model for 
the unknown parameters, is commonly used when posing opti­
mal stochastic adaptive control problems or when using an ex­
tended Kalman filter (EKF) to estimate the unknown parameters 
of the system. Throughout the remainder of the paper it is 
assumed that an EKF is used to provide estimates of the aug­
mented state (z(k), as well as the unknown parameters) and 
the state estimation error covariance matrix, defined as 

x(k) = E[x(k)\Y'',U''-'] and 

Pik) ^ E[[x(k) - xik)][x(k) - xik)V\Y'', U'-']. 

Here, f / * ^ ' - { « ( 0 ) , M ( l ) , . . . , M ( f c - l ) ) , y * ^ {3^(1),y(2), 
• • • ,yik)}, andE[a\P] denotes the conditional expectation of 
random variable a, conditioned on the sigma-algebra generated 
by random variables p. It is straightforward (Ljung and Soders-
trom, 1983) to design an EKF for (2). 

Assume that at time k the control sequence [/*"' has been 
applied to the system and the observation sequence 7 ' has been 
obtained. Introduce the loss function 

j(k) = 5 £ [ S x'^ik + i\k)Qx(k + i\k) 

G -

+ ru^ik + i - 1)1 7 ' , f/*~'], 

(3) 

where Q^ is a positive-semidefinite n X n matrix, N is the 
prediction horizon, r > 0 is a scalar input weighting factor, and 
0 denotes an « X n matrix of zeros. For the remainder of the 
paper, the notation 0 will refer to either an «-length vector or 
n X n matrix of zeros, which will be clear from the context. I 
will denote the « X n identity matrix. x{k + i\k) is the i-step-
ahead prediction of the state at time k. 

The main difference between (3) and standard predictive 
control loss functions lies in the definition ot x(k + i\k). For 
i = 1,2, ...,N, define 

x(k + i\k) = E[x(k+ 0 | 7 * , U''-\xik)], 

where x{k) = x(fc) — x(k) is the state estimation error at time 
k. Thus, x(k + i\k) is allowed to be a function of the unknown 
random variable x(k), which accounts for the need for the 
conditional expectation in (3). Note that no such expectation 
is needed in standard predictive control loss functions, where 
the j-step-ahead prediction of the state is not allowed to depend 
on any unknown random variables. The dependence of x(k + 
i\k) on x(k) is essentially what results in the cautious property 
of the proposed controller, since, after making appropriate sub­
stitutions and taking the expectation in (3), Pik) will be present 
in the control law. 

At time k, u(k) is selected to minimize J(k) subject to the 
constraint u(k + i) = Ofov i = 1,2, . .., N - 1. u(k) is then 
applied to the system, and the process is repeated at time k + 
1. Thus, the control strategy is receding horizon suboptimal 
control. The constraint u(k + i) - 0 fot i = 1,2, ..., N — 1 
is a commonly employed constraint in predictive control where 
the objective is to control the system about a zero setpoint (De 
Keyser et al., 1988). The interpretation is that one assumes 

u(k), and no other control action, will be applied to bring the 
system back to the desired value within the prediction horizon. 

Assuming the unknown parameters vary slowly, so that over 
the prediction horizon (2) can be linearized about the parameter 
estimates at time k, (2) can be approximated by 

x(k + i) s F{k)xik + i - \) + [gixik)) 

+ G(k)(x(k + (• - 1) - x(k))]u{k + i - I) 

+ D(k) + 
w(k + i - 1) 

y(k + i - \) 
(4) 

where 

Fik) _ dfiO 

G(k)^ 

9C 

dg(0 

e=i(t) 

A(k) lyik) 0 

a? i=x(k) 

gixik)) = 

bik) 

0 

0 

0 0 I 

0 0 0 

.0 0 0. 

, and 

Dik) ^ fixik)) - Fik)xik) 

-dik)yik) 

0 

0 

Here, xik) has been partitioned as {fik) d^ik) 5^(fc)]^, and 
Aik) denotes A{k) with its parameters replaced by their esti­
mates. 

Taking the conditional expectation of (4) gives 

xik + i\k) = . 

Fik)xik) + Fik)xik) + [gixik)) 

+ Gik)xik)]uik) + Dik) : j = 1. 

Fik)xik + i - l\k) + Dik) : / > 2 

The expression for i = 1 results from the fact that E[xik)\Y'', 
[/*"', xik)] = xik) = xik) + xik). Solving expHcitly for i = 
1, 2, . . . , /Ogives 

xik + i\k) = F'ik)xik) + F'ik)xik) + F'-'ik)[gixik)) 
1-1 

+ Gik)xik)]uik) + Z F'ik)Dik). (5) 

Substituting (5) into (3) results in Jik) being a quadratic func­
tion of uik). Thus, the optimal input can be found by setting 
dJik)lduik) = 0 and solving for uik). Noting that uik) is 
required to be a measureable function of { [/*"', 7*} and that 
E{xik)\Y'', U''~^] = 0, it can be shown that the optimal input 
is given by 

N 

uik) = - { I iKi + E[x''ik)H^jxik)\Y'', t/*"']) + r}"' 
1=1 

N 

X { E (/!2,, + E[x''ik)H^,iXik)\Y'', f /*- ' ] )}, where (6) 
1=1 

hu ^ [F'-\k)gixik))YQF'~\k)gixik)) 

= b\k)[A'-\k)YQA>^\k)bik), (7) 
j - i 

h2.i - [F'-\k)gixik))rQ[F'ik)xik) + I F'ik)Dik)] 

= b^ik)lA'-\k)VQ,A'ik)zik), (8) 
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H,,, ^ {F'-\k)G{k)VQ[F'-\k)G{m 

H. 

— 

-0 0 0 

0 0 0 

0 0 [A'-\k)YQA'-'\k) 
, and ( 

- [F'-\k)G{k)YQF\k) 

0 0 0 
0 0 0 

/— 1 

[A'-\k)YQ,A'{k) [A'~\k)YQ,Y.A\k)y{k) 0 
_ J=0 

(9) 

(10) 

(6) through (10) follow via straightforward but tedious algebra, 
the details of which have been omitted. 

(6) can be further simplified by noting that, for an n-lenth 
random vector.x and an n X n deterministic matrix M, E[x'^Mx] 
= tr{E[xx^]M), where tr(') denotes the trace of a matrix. 
Consequently, (6) can be rewritten as 

u{k) 
N N 

= - { I ( f t . . , + h,j) + r } - ' { I (/J2,,- + /J4,,)), where (11) 
1=1 1=1 

/J3,/ ^ E[x^(k)H,,x(k)\Y'', [/*-'] = triPik)H,j) 

= tr(P,(k)[A-''(k)VQj'-\k)), (12) 

h^j = Eix''{k)H^_iX(k')\Y\ [/*"'] 

= tr{P(k)H,,) = tr(PAk)lA'~'(k)VQA'{k)) 
j - i 

+ tr(P,,{k)[A'-'{k)VQ, I AJ(k)y(k)). (13) 
y=o 

Here, P(k) has been partitioned into n X n blocks as P(k) = 
"PAk) PAk) PAkf 
P'Uk) P„(k) P„,{k) 
Plik) Pli,{k) P,{k). 

Remark 2.1. The control law (11) is cautious in the sense 
that u{k) is a function of not only the instantaneous state esti­
mate but also its error covariance information through the terms 
hxi and ha,^, i.e. u{k) = u(x(k), P(k)). The term h^i = 
E[x\k)Hijxik) I y*, f/*~'] a 0 is contained in the denomina­
tor, which has the effect of reducing the input magnitude when 
Pik) is large. On the other hand, if P(k) is small, the state 
estimation error is neglected and the cautious control law ap­
proaches that of CE control (see Remark 2.2 below). This 
cautious property, which automatically adjusts the control ac­
tion according to the uncertainty in the state and parameter 
estimation, is a key feature of the control law (11). As illus­
trated in the following section, caution is especially important 
during the transient period of adaptive control when there can 
be large uncertainties in the state and parameter estimation. 

Remark 2.2. If CE were enforced, the corresponding CE 
adaptive predictive control law could be obtained by setting the 
state estimation error x(fc) equal to zero in (5) or, equivalently, 
setting Pik) equal to zero in (12) and (13). The resulfing CE 
control law would then be 

UcE(k) = - { X hij + Ih,, (14) 

Remark 2.3. (11) provides a closed-form expression for the 
cautious control law, with computational expense that is not greatly 
increased over that for the CE control law of (14). The majority 
of the computational expense in calculating the additional quanti­
ties hxi and hij is in calculating the terms [A'~\k)VQ^A'''\k), 

Fig. 1 Mass/spring/damper system used in the simulations 

which are also required in calculating hi,, and /!2,, in the CE control 
law. This is one of the major advantages of the proposed cautious 
controller over the existing multi-step horizon cautious controllers 
of Tse and Bar-Shalom (1973) and Ku and Athans (1973), which 
have no closed form solution and are computationally expensive. 
Also, the arbitrary time horizon N in the cost function of (3) 
allows greater flexibility in controller design than in the cautious 
control approaches of Hughes and Jacobs (1973), Wittenmark 
(1975), Milito et al. (1980), and Mookerjee and Bar Shalom 
(1989), where the prediction horizon is restricted to only one 
timestep. 

3 Simulation Results 

The purpose of the simulations is to illustrate the cautious 
properties of the cautious control law (11) by comparing its 
performance during the transient period, before the parameter 
estimates have converged, with that of the corresponding CE 
control law (14). The system studied is the second order mass/ 
spring/damper system illustrated in Fig. 1, where the parame­
ters M (mass), X̂  (spring constant), and C (damping constant) 
are unknown and must be estimated adaptively. y(t) and u(t) 
are the displacement and force, respectively, at time t. Using 
numerical values of A/ = 5 kg, if = 50 N/cm, C = 32 Ns/m 
and a sampling rate of 0.02 s, the observable canonical form 
of the discrete time system becomes 

z(k+ 1) = 
fli 1 

fl2 0 
z(k) u(k) + w(k). 

y(k) = [1 0]z(k), where 

a, = 1.517, 02 = -0.880, b, = 0.371, and ^2 = 0.355. For 
scaling purposes, y(k) is measured in units of cm and u(k) in 
units of lOON. Zero-mean Gaussian process noise w{k), with 
covariance matrix 0.251, has been added to the system, and it 
is assumed there is no measurement noise. 

In order to implement the cautious controller for the general 
system (1), it is necessary to select the controller parameters 
N, r, and gz and the Kalman filter parameters F(0) , z(0), a(0), 
and b{0). Values for Â , r, and Q^ should be chosen based on 
the control objective. In general, the values for P (0 ) , £(0), 
fl(0), and ^(0) should be chosen based on any a priori informa­
tion available. A common practice in extended Kalman filtering 
is to setP,„{0) = P,t(0) = PnbiO) = 0 and to sstP,{0), P„(0) 
and Ph{0) to diagonal matrices. Using the notation P^(0) = 
diag [al, a\. a U , P „ ( 0 ) = diag{f7^,,CT^,, . 
and Pi(0) = diag {a\, aj,^, . . . , crlj, the diagonal elements 
should be set to reflect, as accurately as possible, the initial 
uncertainty in the state and parameter estimates. Based on the 
authors' experience, it is recommended that the cr's be specified 
so that, with reasonable confidence, the true value of the corre-

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 1998, Vol. 120 / 421 

Downloaded 23 Jun 2008 to 129.105.36.179. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



30 

1 20 
O 
-o 10 
CD 

2 0 
o 
o 

•10 

-20 

• 

; • ' . y . . 

• : x / ''• 

• ' • ' 

0 10 20 . 30 
timestep 

• 

• 

___,---\, 

• 

40 5 

250 

200 

150 

S 100 

50 

Fig. 2 Comparison of the controlled output using cautious control (y l̂ 
and CE control (y^) with bo = 0.1 and a^ = 0.7 

/ \ ^<^^ 

K' *^b=0''^ 

, 

\ Ji(=8.95) . 

-0.5 0.5 

sponding component of the state or parameter is known to lie 
within the range ±a of its initial guess. 

For all simulations the following values were used. The con­
troller parameters were Â  = 5, r = 0.5 and Qz = [oo]- The 
system state was given initial conditions z(0) = [5 3]^^. Initial 
guesses for the state and parameters were z(0) = [0 O]'^, a(0) 
= [0 0]^, and S(0) = [̂ o boV< where bo was varied between 
—0.5 and 1.0. Values used for the assumed uncertainty in the 
initial guesses were a^^ = a^. 5.0, o-„, = 1.5, <7„ = 1.0, and 
(7(,, = (Tij = ffs, where ai, was either 0.7 or 1.0. In general, this 
represents a situation where there is very little a priori knowl­
edge of the parameters. 

Figures 2 and 3 show typical simulation results for bo = 0.1 
and ffj = 0.7 for both the cautious control law (11) and the 
corresponding CE control law (14). Figure 2 shows the controlled 
output using the cautious control law (y^) and CE control law 
iyce), and Fig. 3 shows the corresponding inputs. With 5(0) under­
estimated, during the initial timesteps when the parameter estima­
tion has not yet converged and is still inaccurate, the CE control 
law calls for very large inputs. The result is a large temporary 
burst in the output, as shown in Fig. 2. In contrast, the cautious 
control law takes into account the uncertainties in the parameter 
estimates and acts much more conservatively during the transient 
period. Uc remains at reasonable levels, and there is no large burst 
in y^. After approximately 25 timesteps the parameter estimates 
converge to close to their true values, the elements of Pik) that 
reflect the uncertainties in the parameter estimates become negligi­
bly small, and the two control laws become nearly identical. Thus, 
the steady-state performance of the cautious control law and the 
CE control law are nearly identical. 

In order to investigate the effects of caution and inaccuracies 
in the initial guesses for the parameters, a Monte Carlo simula­
tion was used to compare the cautious and CE control laws as 
the value for bo varied between —0.5 and 1.0. The criterion 
used to compare the control laws is the evaluated loss function 
(3) averaged over the transient period (the first 50 timesteps) 
of the simulation, i.e. 

50 

S 0 

-50 • 

1' 

1 

\ 

U^ 

• 

• 

10 20 30 
timestep 

40 50 

Fig. 3 Comparison of the control input using cautious control (Uc) and 
CE control (Uc^) with bo = 0.1 and a,, = 0.7. The output is shown in 
Fig. 2. 

Fig. 4 Comparison of the performance criterion using CE control [Jo,), 
cautious control (Jc) with two different values for the Initial measure of 
the parameter uncertainty, and the corresponding control law with the 
parameters l<nown (Jt ) . Values are plotted versus bo. 

m̂ = 55 S x''(k)Qx(k) + ru\k - 1), 

where m = 'c' indicates the cautious control law was used, m 
= ' ce ' indicates the CE control law was used, and m = 'k' 
indicates the true parameters were known and available to the 
controller. That is, m = 'k' indicates the CE control law (14) 
was used with the estimated parameters replaced by their true 
values. 7j. serves as a benchmark for the minimum achievable 
loss function. For each control law and each value of bo, 1000 
Monte Carlo simulations were run to evaluate the performance 
criteria, the average of which is plotted in Fig. 4. J^e, Jt, and 
Jc with two different values of a,, are plotted versus bo. Note 
that since 7* uses the true parameters, as opposed to their esti­
mates, it does not depend on the initial guess bo-

Remark 3.1. It is apparent from Fig. 4 that the transient 
performance of the CE controller is highly sensitive to the initial 
guesses for the parameters bi (true value is 0.371) and 2̂ (true 
value is 0.355). With fc| and ̂ 2 initially underestimated (e.g. 
bo = 0.1) or the sign reversed (e.g., bo = —0.3), J^e increases 
markedly. Situations like this result in large initial bursts in the 
input and output, as illustrated in Figs. 2 and 3. In contrast, the 
cautious control law is far less sensitive to the initial guesses 
for the parameters. Assuming an initial uncertainty of ai, = 0.7, 
the cautious controller is robust with respect to errors in the 
initial guess until bo drops below approximately - 0 . 1 , at which 
point Jc begins to grow. By assuming a large initial uncertainty 
of (T(, = 1.0, the robustness is extended to even smaller values 
of bo. For example, with bo = —0.4 (7^ = 20.2) the cautious 
controller performs almost as well as li bo = 0.36 (J^ = 17.5). 
It is interesting to note that for b^ and ^2 initially overestimated 
(e.g. bo = 1.0), the CE controller performs similarly to the 
cautious controller. The explanation is that overestimating bi 
and b2 overestimates the effect of the input and results in smaller 
input magnitudes, which is a form of caution. 

Remark 3.2. The main performance advantage of the cautious 
controller over the CE controller occurs in situations where there 
is large uncertainty in the parameter estimates, in particular during 
the transient period before the estimates have had a change to 
converge. After the parameter estimates have converged, there is 
much less uncertainty in the system. P^bik), Pab{k), and Pb{k) 
typically grow small enough that the terms h^j and hi,j in the 
control law (11) are negligible, in which case the cautious control 
law approaches the CE control law. For all cases considered and 
all three control laws (cautious, CE, and known parameters), the 
steady-state performance of the three controllers was virtually 
identical, never differing by more than 3%. 
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4 Conclusions 
Through modification of a standard multi-step horizon pre­

dictive control loss function, a new suboptimal N-step-ahead 
cautious controller for adaptive control applications has been 
developed in this paper. The modification involves allowing the 
predicted value of the future state to be a function of the current 
error in the sate and parameter estimation. The control law that 
results is cautious in the sense that the control input is a function 
of P{k). If the uncertainty in the parameter estimation is large, 
elements of P{k) will be large and the controller takes less 
aggressive action than if the uncertainty is small. The new con­
troller is unique in the sense that it has a relatively simple 
closed-form solution that combines caution with the versatility 
of a multi-step horizon loss function. It has been demonstrated 
via Monte Carlo simulation that in the transient period, when 
the uncertainty in the parameter estimation is large, the cautious 
controller can achieve substantially better performance than the 
corresponding CE adaptive predictive controller. 

References 
Astrom, K. J., and Wittenmark, B., 1995, Adaptive Control, 2nd Edition, Addi­

son-Wesley, New York, 
Bar-Shalom, Y., 1981, "Stochastic Dynamic Programming: Caution and Probing," 

IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, pp. 1184-1195. 
Bar-Shalom, Y., and Tse, E., 1974, "Dual Effect, Certainty Equivalence, and 

Separation in Stochastic Control," IEEE Transactions on Automatic Control, Vol. 
AC-19, No. 5, pp. 494-500. 

De Keyser, R. M. C , Van De Velde, G. A., and DuMortier, F. A. G., 1988, "A 
Comparative Study of Self-Adaptive Long-range Predictive Control Methods," 
Automatica, Vol. 24, pp. 149-163. 

Hughes, D. J., and Jacobs, O. L. R., 1973, "Performance of LQG Control Sys­
tems Using Optimal k-step-ahead Control Laws," Proceedings of the Joint Auto­
matic Control Conference, Columbus, OH., paper 22.4. 

Jacobs, O. L. R., and Patchell, J. W., 1972, "Caution and Probing in Stochastic 
Control," International Journal of Control, Vol. 16, No. 1, pp. 189-199. 

Ku, R., and Athans, M., 1973, "On the Adaptive Control of Lineal' Systems 
Using the Open-Loop-Feedback-Optimal Approach," IEEE Transactions on Au­
tomatic Control, Vol. AC-18, No. 5, pp. 489-493. 

Ljung, L., and Soderstrom, T., 1983, Theory and Practice of Recursive Identifi­
cation, The MIT Press, Cambridge, MA. 

Milito, R., Padilla, C. S., Padilla, R. A., and Cadorin, D., 1980, "Dual Control 
Through Innovations," IEEE Conference on Decision and Control, Vol. 1, pp. 
341-345. 

Mookerjee, P., and Bar-Shalom, Y., 1989, "An Adaptive Dual Controller for 
a MIMO-ARMA System," IEEE Transactions on Automatic Control, Vol. 34, 
No. 7, pp. 795-800. 

Stemby, J., 1976, "A Simple Dual Control Problem with an Analytical Solution," 
IEEE Transactions on Automatic Control, Vol. AC-21, No. 6, pp. 840-844. 

Sternby, J., 1979, "Performance Limits in Adaptive Control," IEEE Transac­
tions on Automatic Control, Vol. AC-24, No. 4, pp. 645-647. 

Tse, E., and Bar-Shalom, Y., 1973, "An Actively Adaptive Control for Linear 
Systems with Random Parameters via the Dual Control Approach," IEEE Trans­
actions on Automatic Control, Vol. AC-18, No. 2, pp. 109-117. 

Wittenmark, B., 1975, "An Active Suboptimal Dual Controller for Systems 
with Stochastic Parameters," Automatic Control Theory and Applications, Vol. 
3, No. 1, pp. 13-19. 

State Observer for Linear Time-
Invariant Systems With Quantized 
Output 

Joono Sur* and Brad E. Paden^ 

In this paper we introduce a state observer for linear time-
invariant systems with quantized outputs. The observer employs 

' Department of Mechanical and Environmental Engineering, University of 
California, Santa Barbara, CA 93106. 

^ Associate Professor, Department of Mechanical and Environmental Engi­
neering, University of California, Santa Barbara, CA 93106. 

Contributed by the Dynamic Systems and Control Division of THE AMERICAN 
SOCIETY OF MECHANICAL ENOINEER.S . Manuscript received by the Dynamic Sys­
tems and Control Division December 18, 1995. Associate Technical Editor: 
S. D. Fassois. 

an orthogonal projection operation at quantizer output disconti­
nuities to enhance its convergence rate for stable systems. The 
increasing rate of convergence and stability has been proven by 
using Lyapunov second method. Some sufficient and necessary 
conditions of stability for the unstable systems are derived. The 
sufficient condition of noise .stability is given and the maximal 
bound of noise stability is presented. The proposed methodology 
has been applied to state estimation of a DC-motor with optical 
encoder. 

1 Introduction 
In all digitally controlled plants, measured outputs are quan­

tized prior to control computation. In most cases, the quantiza­
tion error is small compared to system noise and is justifiably 
ignored. There are exceptions, however. One notable example 
is motor control where an optical encoder provides the only 
measured output, and mechanical position noise of the shaft 
due to vibration etc. is small as compared to quantization errors. 
In this paper we address the observer design problem for such 
linear time-invariant systems with quantized outputs. We show 
that incorporation of knowledge of the quantization nonlinearity 
leads to an improvement in the state estimate with a minor 
increase in observer complexity. Quantization has been ad­
dressed in the control systems context by several researchers. 
Curry (1970) has developed maximum likehood estimates for 
static linear systems driven by Gaussian noise and having quan­
tized outputs. The extension to linear dynamic systems appears 
intractable analytically, however, Curry does derive approxi­
mate formulae for state estimates that work well with small 
quantizer steps. Another approach proposed by Schewppe 
(1968) propagates an ellipsoidal set which approximates the 
true system state by containment. This method only requires 
knowledge of bounds on inputs, and bounds on output measure­
ment (quantizer) error; the performance calculation is intracta­
ble analytically in this case also. More recently. Miller et al. 
(1989) establish useful bounds on tracking performance in digi­
tally controlled plants, where there is numerical quantization in 
the digital computation of the control input. Delchamp (1988) 
takes a new and fundamental approach to dealing with quantiza­
tion. Rather than treating quantization as a bounded disturbance, 
his method treats quantization exactly, in the linear dynamic 
case, and establishes conditions under which the uncertainty 
in the system state tends to zero (as measured by differential 
entropy). The approach uses the system input to optimize infor­
mation acquired on the state, but mixed approaches aimed at 
addressing information and tracking performance simultane­
ously now appear as possibilities. More recent works by Rotea 
and Williamson (1994) and others are representative of a broad 
class of problems focused on choosing state-space realization 
of discrete-time linear time-invariant systems which perform 
well in computer implementations. These methods effectively 
treat numerical round-off quantization as a noise source and 
address the scaling of internal signals to optimize competing 
objectives of {a) low sensitivity to quantization and {b) the 
desire for infrequent numerical overflow. The approach con­
trasts with the authors where quantization is modeled as a non-
linearity, rather than a noise source. Moreover, we necessary 
work with continuous systems rather than discrete-time systems. 
More recent work addressing chaos in feedback systems with 
quantization is due to Steppan and Haller (1996). 

This paper has the following format. In Section 2 we motivate 
and introduce the observer of SISO and MIMO systems. In 
Section 3 we modify existing Lyapunov theory to accommodate 
the discontinuous updates used in our observer, and prove error 
convergence for a stable plant. Some sufficient and necessary 
conditions of stability for an unstable system are given. The 
maximal bound of noise stability is presented. Section 4 con­
tains simulation results for the stable and unstable DC-motor 
with optical encoder. Our conclusions are made in Section 5. 
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